Program to run by Madelaine about training order and content Trying
to reduce the load - brain …and have a way to come back for repeats day
after example whonet test data
Before we come: Setup
(chap 0)
At arrival :
Basic R and github with
Rstudio (chap 2)
learning how to use a R markdown document and git backup, small intro
to R programming language
Starting point: learning_R
git repo has been cloned
locally
We have during the course here :
Basic R for data
analysis (chap 3)
NB: Data from Human sampling (KoboToolbox)
Exercises to go further (we do not need to do all). Solutions are
patterns the students can reuse when working with their own data.
All in the spirit of data inspection to ensure proper quality: Which
includes detecting mistakes or inconsistencies. Learning why its
important not to modify the raw data, doing so by code allows to detect
errors and allows transparency of our choices.
Using data directly
from a database (WHONET) and joining datasets. (chap 4)
NB: WHONET “fake” data for learning + data from Human sampling
(KoboToolbox)
Only if time permits:
Back to Index
LS0tDQp0aXRsZTogImByIHBhcmFtcyR0aXRsZWAiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclZCAlQiwgJVknKWAiDQphdXRob3I6IEV2ZSBaZXlsIEZpc2tlYmVjayBhbmQgTWFkZWxhaW5lIE5vcnN0csO2bQ0KcGFyYW1zOg0KICB0aXRsZTogIlRyYWluaW5nIHByb2dyYW06IFdoYXQgeW91IHdpbGwgYmUgbGVhcm5pbmciIA0KICBwcm9qZWN0X3BhdGg6ICJgciBoZXJlOjpoZXJlKClgIg0KDQogIA0Ka25pdDogKGZ1bmN0aW9uKGlucHV0RmlsZSwgZW5jb2RpbmcpIHsNCiAgcm1hcmtkb3duOjpyZW5kZXIoaW5wdXRGaWxlLCBlbmNvZGluZyA9IGVuY29kaW5nLCBvdXRwdXRfZGlyID0gIi4uLy4uL2RvY3MiKSB9KQ0KICANCm91dHB1dDogDQogIA0KICBybWRmb3JtYXRzOjpyZWFkdGhlZG93bjoNCiAgICAgIGNzczogc3R5bGUuY3NzDQogICAgICBzZWxmX2NvbnRhaW5lZDogdHJ1ZQ0KICAgICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgICAgdG9jX2RlcHRoOiA0DQogICAgICBkZl9wcmludDogcGFnZWQNCiAgICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgICAgYXV0aG9yOiBwYXJhbXMkYXV0aG9yDQogICAgICBoaWdobGlnaHQ6IGVzcHJlc3NvDQogICAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCiAgICAgIA0KDQogIA0KZWRpdG9yX29wdGlvbnM6IA0KICBtYXJrZG93bjogDQogICAgd3JhcDogNzINCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgZXZhbCA9IFRSVUUsIA0KICAgICAgICAgICAgICAgICAgICAgIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsDQogICAgICAgICAgICAgICAgICAgICAgcmVzdWx0cyA9ICdoaWRlJykNCmBgYA0KDQo+IFByb2dyYW0gdG8gcnVuIGJ5IE1hZGVsYWluZSBhYm91dCB0cmFpbmluZyBvcmRlciBhbmQgY29udGVudCBUcnlpbmcgdG8NCj4gcmVkdWNlIHRoZSBsb2FkIC0gYnJhaW4gLi4uYW5kIGhhdmUgYSB3YXkgdG8gY29tZSBiYWNrIGZvciByZXBlYXRzIGRheQ0KPiBhZnRlciBleGFtcGxlIHdob25ldCB0ZXN0IGRhdGENCg0KIyBCZWZvcmUgd2UgY29tZTogU2V0dXAgKGNoYXAgMCkNCg0KQXQgYXJyaXZhbCA6DQoNCi0gICBbIF0g4oCCQ29udHJvbCBiZWZvcmUgc3RhcnRpbmcgdGhlIGRhdGEgY291cnNlDQotICAgWyBdIOKAgioqUnNjcmlwdCB0byBydW4gdG8gaW5zdGFsbCBwYWNrYWdlcyA/IG9yIFJlbnYgPyoqIE5lZWQgdG8gZG8gb25lIGFuZCB0cnkgLSB0aGlzIGNvdWxkIGhlbHAgLSBUaGlzIE1VU1QgYmUgZG9uZSBhdCB0aGUgZW5kIG9mIHRoZSBjb3Vyc2UgcHJlcGFyYXRpb24sIGhvd2V2ZXIgdG8gYmUgc3VyZSB3ZSBoYXZlIGFsbCA/ICggV2UgYWxsIGhhdmUgaW5zdGFsbGVkIHRoZSBuZWVkZWQgcGFja2FnZXMgYW5kIFByb2dyYW1zPykNCg0KDQojIEludHJvZHVjdGlvbiAoY2hhcCAxKQ0KDQotICAgWyBdIOKAgkdvYWwgb2YgdGhlIGNvdXJzZQ0KLSAgIFsgXSDigIJ3aGF0IHRvIGV4cGVjdCBhbmQgc3RhdGUgb2YgbWluZA0KLSAgIFsgXSDigIJ3aGF0IGFib3V0IHVzaW5nIEFJIHRvIHdyaXRlIGNvZGUgPw0KLSAgIFsgXSDigIJhZGRpdGlvbmFsIHJlc291cmNlcyB5b3UgY2FuIHVzZSB0byBsZWFybiBtb3JlLCBoZXJlIGFuZA0KICAgIHRocm91Z2ggdGhlIGNvdXJzZQ0KDQojIEJhc2ljIFIgYW5kIGdpdGh1YiB3aXRoIFJzdHVkaW8gKGNoYXAgMikNCiANCiA+IGxlYXJuaW5nIGhvdyB0byB1c2UgYSBSIG1hcmtkb3duIGRvY3VtZW50IGFuZCBnaXQgYmFja3VwLCBzbWFsbCBpbnRybyB0byBSIHByb2dyYW1taW5nIGxhbmd1YWdlDQoNClN0YXJ0aW5nIHBvaW50OiBgbGVhcm5pbmdfUmAgZ2l0IHJlcG8gaGFzIGJlZW4gY2xvbmVkIGxvY2FsbHkNCg0KLSAgIFsgXSDigIIgUnN0dWRpbyB1c2FnZTogY3JlYXRpbmcgLyBvcGVuaW5nIGFuIFJwcm9qZWN0DQotICAgWyBdIOKAgiBHaXQgc29mdHdhcmUgaXMgdXNlZCBmb3IgYmFja3VwIG9mIG5vdGVzIGFuZCBjb2RlIHZlcnNpb25pbmcgdmlhIFJzdHVkaW8uIChXb3JrZmxvdykNCi0gICBbIF0g4oCCIC5naXRpZ25vcmUgZmlsZSBleGVyY2lzZSAoc2V0dXAgYXQgdGhlIHNhbWUgdGltZSkNCi0gICBbIF0g4oCCIFVzaW5nIGEgbm90ZWJvb2sgaW4gUnN0dWRpbzogYW5hdG9teSwgdGV4dCwgY29kZSBhbmQgcmVuZGVyaW5nDQotICAgWyBdIOKAgiBFeGVyY2lzZSBVc2luZyBhIFIgbWFya2Rvd24gZG9jdW1lbnQgJiBGYXN0IG92ZXJ2aWV3IG9mIFIgcHJvZ3JhbW1pbmcgbGFuZ3VhZ2UgKGludHJvZHVjdGlvbiB0ZXJtcyBhbmQgcnVubmluZyB0aGluZ3MgaW4gdGhlIGNlbGxzKSAhIFRISVMgTkVFRCBUTyBCRSBFWFBMQUlORUQgRFVSSU5HIFRIRSBDT1VSU0UgDQoNCldlIGhhdmUgZHVyaW5nIHRoZSBjb3Vyc2UgaGVyZSA6IA0KDQotICAgWyBdIOKAgmluc3RhbGxhdGlvbiBwYWNrYWdlcyBhbmQgbG9hZGluZyB0aGVtDQotICAgWyBdIOKAgnRha2luZyBub3RlcyBpbiBSbWFya2Rvd24gYW5kIHJ1bm5pZ24gY2VsbHMNCi0gICBbIF0g4oCCUiBub3Rpb25zIC4uLmFib3V0IFIgb2JqZWN0cyAobm90IGluIGRlcHRoKQ0KICAgIC0gICBbIF0g4oCCc29tZSBjb21tb24gZGF0YSB0eXBlcw0KICAgIC0gICBbIF0g4oCCaW50cm9kdWN0aW9uIHRvIHVzZSBoZWxwDQogICAgLSAgIFsgXSDigIJzbWFsbCBpbnRybyB0byBmdW5jdGlvbnMNCiAgICAtICAgWyBdIOKAgnN1Yi1zZXR0aW5nIC8gaW5kZXhlcw0KICAgIC0gICBbIF0g4oCCYSBiaXQgb2YgdmlldyBvZiBvYmplY3RzDQogICAgLSAgIFsgXSDigIJub3Rpb25zIGluIFIgLSBkaWZmZXJlbnQgd2F5cyB0byBkbyB0aGluZ3MgKG5vIHBlcmZlY3QgY29kZSEpDQogICAgLSAgIFsgXSDigIJwaXBlcyANCiAgICAtICAgWyBdIOKAgnNvbWUgdHJpY2tzIA0KLSAgIFsgXSDigIJTYXZpbmcgeW91ciBjb2RlIGFuZCBub3RlcyB0byBnaXQgYW5kIHB1c2ggdG8gZ2l0aHViLg0KICAgIC0gICBbIF0g4oCCVXNpbmcgZ2l0IGluIFIgdG8gYmFja3VwIHlvdXIgY29kZSBpbiBnaXRodWIgKGFkZCAtIGNvbW1pdCAtIHB1c2gpDQogIA0KLSAgIFsgXSDigIIgRXhlcmNpc2UgOiBQcmludGluZyB5b3VyIGNvZGUgaW4gYSB3b3JkIGRvY3VtZW50DQoNCg0KIyBCYXNpYyBSIGZvciBkYXRhIGFuYWx5c2lzIChjaGFwIDMpDQoNCk5COiBEYXRhIGZyb20gSHVtYW4gc2FtcGxpbmcgKEtvYm9Ub29sYm94KQ0KDQotICAgWyBdIOKAgkEgZ29vZCBvcmdhbmlzYXRpb24gb2YgeW91ciBwcm9qZWN0IGZvciBkYXRhIGFuYWx5c2lzDQoNCi0gICBbIF0g4oCCRmlyc3Qgc3RlcHMgaW4gZGF0YSBhbmFseXNpcw0KICAgIC0gICBbIF0g4oCCUmVhZGluZyBhIGRhdGEgZnJhbWUNCiAgICAtICAgWyBdIOKAgmNoZWNraW5nIGFuZCBzZXR0aW5nIGNvcnJlY3QgZGF0YSB0eXBlcw0KICAgIC0gICBbIF0g4oCCZGF0YSB0eXBlcyAocmV2aWV3LCBhbmQgYWRkKQ0KICAgIC0gICBbIF0g4oCCT2J0YWluaW5nIGEgZmFzdCBvdmVydmlldyBvZiB0aGUgZGF0YSBjb250YWluZWQgaW4gYSBkYXRhIGZyYW1lIChFeHBsYWluIHdoYXQgaXMgYSBkYXRhIGZyYW1lKQ0KICAgIC0gICBbIF0g4oCCT2JqZWN0IFZpc3VhbGl6YXRpb24gKGNvZGUgYW5kIFJzdHVkaW8gZW52aXJvbm1lbnQpDQogICAgLSAgIFsgXSDigIJHZXR0aW5nIGEgZmFzdCBzdW1tYXJ5IG9mIHRoZSBkYXRhIGNvbnRhaW5lZCBpbiB5b3VyIGRhdGEgZnJhbWUNCiAgICAgICAgLSAgIFsgXSDigIJjb3VudHMgKGNvbCwgcm93KQ0KICAgICAgICAtICAgWyBdIOKAgmZhY3RvcnMgYW5kIGxldmVscyAoc3VtbWFyeSB0YWJsZSAvIHRhbGx5KQ0KICAgICAgICAtICAgWyBdIOKAgnVzaW5nIHBpcGVzDQoNCi0gICBbIF0g4oCCIERhdGEgZnJhbWUgbWFuaXB1bGF0aW9uIHdpdGggZHBseXIgKGV0Yy4uLikNCiAgICAtICAgWyBdIOKAgmNsZWFuaW5nIGNvbHVtbiBuYW1lcyAoIHZhbHVlcyAtIGVnLiBOQSBhbmQgc3BhY2VzLCBzcGVjaWFsIGNoYXJhY3RlcnMpDQogICAgLSAgIFsgXSDigIJzZWxlY3RpbmcgY29sdW1ucw0KICAgIC0gICBbIF0g4oCCbXV0YXRpbmcNCiAgICAtICAgWyBdIOKAgmZpbHRlcmluZw0KICAgIC0gICBbIF0g4oCCZmluZGluZyBzcGVjaWZpYyBjb2x1bW5zDQogICAgLSAgIFsgXSDigIJhcnJhbmdpbmcgcm93cyBieSB2YWx1ZXMgaW4gdGhlIGNvbHVtbnMgIA0KICAgIC0gICBbIF0g4oCCc2F2aW5nIGludG8gYSBzcHJlYWRzaGVldCANCiAgICAtICAgWyBdIOKAgnN1bW1hcnkgKGJhc2U6OikNCiAgICAtICAgWyBdIOKAgmNoZWNraW5nIGlmIHZhbHVlcyBhcmUgdW5pcXVlIChJRCkNCiAgICAtICAgWyBdIOKAgmdyb3VwX2J5DQogICAgLSAgIFsgXSDigIJjb3VudCBhbmQgY3JlYXRpb24gb2Ygc2ltcGxlIGNvbnRpbmdlbmN5IHRhYmxlcw0KICAgIC0gICBbIF0g4oCCZmlsdGVyaW5nIG91dCByb3dzIHdpdGggcG9vciBkYXRhIHF1YWxpdHkgKHVzaW5nIGZpbHRlciBvbiBJRCkgDQogICAgLSAgIFsgXSDigIJleHBvcnRpbmcgZGF0YXNldCB0byBmaWxlIChjc3YpDQogICAgLSAgIFsgXSDigIJpZl9lbHNlIGFuZCBjYXNlX3doZW4gdG8gcmVwbGFjZSBtaXNzaW5nIHZhbHVlcw0KICAgIC0gICBbIF0g4oCCY291bnQgYW5kIHN1bW1hcnkgZnVuY3Rpb25zIChjb250aW5nZW5jeSB0YWJsZXMpIGluIGRwbHlyDQogICAgLSAgIFsgXSDigIJzb21lIGJhc2ljIHBsb3R0aW5nDQogICAgLSAgIFsgXSDigIJleHBvcnRpbmcvcmVhZGluZyBvYmplY3QgdG8vZnJvbSByZHMgZmlsZQ0KDQpFeGVyY2lzZXMgdG8gZ28gZnVydGhlciAod2UgZG8gbm90IG5lZWQgdG8gZG8gYWxsKS4gDQpTb2x1dGlvbnMgYXJlIHBhdHRlcm5zIHRoZSBzdHVkZW50cyBjYW4gcmV1c2Ugd2hlbiB3b3JraW5nIHdpdGggdGhlaXIgb3duIGRhdGEuICAgDQogICAgDQpBbGwgaW4gdGhlIHNwaXJpdCBvZiBkYXRhIGluc3BlY3Rpb24gdG8gZW5zdXJlIHByb3BlciBxdWFsaXR5OiBXaGljaCBpbmNsdWRlcyANCmRldGVjdGluZyBtaXN0YWtlcyBvciBpbmNvbnNpc3RlbmNpZXMuIA0KTGVhcm5pbmcgd2h5IGl0cyBpbXBvcnRhbnQgbm90IHRvIG1vZGlmeSB0aGUgDQpyYXcgZGF0YSwgZG9pbmcgc28gYnkgY29kZSBhbGxvd3MgdG8gZGV0ZWN0IGVycm9ycyBhbmQgYWxsb3dzIHRyYW5zcGFyZW5jeQ0Kb2Ygb3VyIGNob2ljZXMuIA0KICAgIA0KDQojIFVzaW5nIGRhdGEgZGlyZWN0bHkgZnJvbSBhIGRhdGFiYXNlIChXSE9ORVQpIGFuZCBqb2luaW5nIGRhdGFzZXRzLiAoY2hhcCA0KQ0KDQoNCk5COiBXSE9ORVQgImZha2UiIGRhdGEgZm9yIGxlYXJuaW5nICsgZGF0YSBmcm9tIEh1bWFuIHNhbXBsaW5nIChLb2JvVG9vbGJveCkNCg0KLSAgIFsgXSDigIJjcmVhdGluZyBhIGNvbm5lY3Rpb24gdG8gYSBTUUxpdGUgZGF0YWJhc2UNCiAgICAtICAgWyBdIOKAgndoeSB0byB1c2UgYSBkYXRhYmFzZQ0KICAgIC0gICBbIF0g4oCCbGF6eSBldmFsdWF0aW9uIChub3Rpb24pDQogICAgDQotICAgWyBdIOKAgnF1ZXJ5aW5nIGEgdGFibGUgaW4gYSBkYXRhYmFzZSB1c2luZyBkYnBseXINCiAgICAtICAgWyBdIOKAgmV2YWx1YXRpbmcgdGhlIHF1ZXJ5IChjb2xsZWN0KSANCg0KLSAgIFsgXSDigIJSZW1pbmRlciAtIHJlYWRpbmcgZnJvbSByZHMgZmlsZSAgICANCi0gICBbIF0g4oCCam9pbmluZyBkYXRhIGZyYW1lcyAoV0hPTkVUIHRvIGh1bWFuIGRhdGEgcXVlc3Rpb25uYWlyZXMpDQotICAgWyBdIOKAgm1ha2luZyBjYXRlZ29yaWVzIGFuZCBwbG90dGluZyB0aGVtIA0KLSAgIFsgXSDigIJkYXRhIHdpZGUgYW5kIGxvbmcgZm9ybWF0IHRyaWNrDQotICAgWyBdIOKAgiJiYWQgbG9va2luZyBwbG90IiwgYm94IHBsb3RzLCBzaW1wbGUgaGVhdCBtYXANCi0gICBbIF0g4oCCc2F2aW5nIHBsb3RzIA0KDQo8dT5Pbmx5IGlmIHRpbWUgcGVybWl0czo8L3U+DQoNCi0gICBbIF0g4oCCcmVtb3Zpbmcgb2JqZWN0cyBmcm9tIG1lbW9yeSAoZHB1dCB0cmljaykNCi0gICBbIF0g4oCCbm90aW9uIG9mIGlkZW50aXR5IGluIG9iamVjdHMgYW5kIG1lbW9yeSBwb2ludGVycyAtIGF3YXJlbmVzcyBpZGVudGljYWwgYW5kID09IA0KIC0gICBbIF0g4oCCc29tZSBtb3JlIGV4ZXJjaXNlcyBhbmQgdGlkeSBzZWxlY3Rpb24gbWVhbnMNCiAgDQoNCg0KPCEtLSBJICB0aGluayBpdCB3aWxsIGJlIGFjdHVhbGx5IG1vcmUgdGhhbiBlbm91Z2ggbWF0ZXJpYWwgDQoNCiMjIEV2ZW50dWFsbHkNCg0KLSAgIHB1bGxpbmcgZnJvbSBnaXRodWIgLSByZWNvdmVyeSBvZiB3aGF0IGhhcyBiZWVuIGRvbmUgYW5kDQogICAgY29sbGFib3JhdGlvbg0KLSAgIGdpdGh1YiBhbmQgWmVub2RvIC0gY2FuIHNob3cgdGhlbSBhcnRpY2xlDQotICAgd3JpdGluZyBmdW5jdGlvbnMgdXNpbmcgZHBseXIgLyB0aWR5dmVyc2UgLi4uIG9vcHMNCg0KPyAtIGRlY2ltYWxzIC4uLiB3YXJuaW5nICEgbm90IGRvbmUgLVw+IGRvIHRoYXQgZHVyaW5nIHRyYW5zZm9ybWF0aW9uIC0NCi0tPiANCg0KQmFjayB0byBbSW5kZXhdKGluZGV4Lmh0bWwp