Training program: What you will be learning

Program to run by Madelaine about training order and content Trying to reduce the load - brain …and have a way to come back for repeats day after example whonet test data

1 Before we come: Setup (chap 0)

At arrival :

2 Introduction (chap 1)

3 Basic R and github with Rstudio (chap 2)

learning how to use a R markdown document and git backup, small intro to R programming language

Starting point: learning_R git repo has been cloned locally

We have during the course here :

4 Basic R for data analysis (chap 3)

NB: Data from Human sampling (KoboToolbox)

Exercises to go further (we do not need to do all). Solutions are patterns the students can reuse when working with their own data.

All in the spirit of data inspection to ensure proper quality: Which includes detecting mistakes or inconsistencies. Learning why its important not to modify the raw data, doing so by code allows to detect errors and allows transparency of our choices.

5 Using data directly from a database (WHONET) and joining datasets. (chap 4)

NB: WHONET “fake” data for learning + data from Human sampling (KoboToolbox)

Only if time permits:

Back to Index

LS0tDQp0aXRsZTogImByIHBhcmFtcyR0aXRsZWAiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclZCAlQiwgJVknKWAiDQphdXRob3I6IEV2ZSBaZXlsIEZpc2tlYmVjayBhbmQgTWFkZWxhaW5lIE5vcnN0csO2bQ0KcGFyYW1zOg0KICB0aXRsZTogIlRyYWluaW5nIHByb2dyYW06IFdoYXQgeW91IHdpbGwgYmUgbGVhcm5pbmciIA0KICBwcm9qZWN0X3BhdGg6ICJgciBoZXJlOjpoZXJlKClgIg0KDQogIA0Ka25pdDogKGZ1bmN0aW9uKGlucHV0RmlsZSwgZW5jb2RpbmcpIHsNCiAgcm1hcmtkb3duOjpyZW5kZXIoaW5wdXRGaWxlLCBlbmNvZGluZyA9IGVuY29kaW5nLCBvdXRwdXRfZGlyID0gIi4uLy4uL2RvY3MiKSB9KQ0KICANCm91dHB1dDogDQogIA0KICBybWRmb3JtYXRzOjpyZWFkdGhlZG93bjoNCiAgICAgIGNzczogc3R5bGUuY3NzDQogICAgICBzZWxmX2NvbnRhaW5lZDogdHJ1ZQ0KICAgICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgICAgdG9jX2RlcHRoOiA0DQogICAgICBkZl9wcmludDogcGFnZWQNCiAgICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgICAgYXV0aG9yOiBwYXJhbXMkYXV0aG9yDQogICAgICBoaWdobGlnaHQ6IGVzcHJlc3NvDQogICAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUNCiAgICAgIA0KDQogIA0KZWRpdG9yX29wdGlvbnM6IA0KICBtYXJrZG93bjogDQogICAgd3JhcDogNzINCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgZXZhbCA9IFRSVUUsIA0KICAgICAgICAgICAgICAgICAgICAgIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsDQogICAgICAgICAgICAgICAgICAgICAgcmVzdWx0cyA9ICdoaWRlJykNCmBgYA0KDQo+IFByb2dyYW0gdG8gcnVuIGJ5IE1hZGVsYWluZSBhYm91dCB0cmFpbmluZyBvcmRlciBhbmQgY29udGVudCBUcnlpbmcgdG8NCj4gcmVkdWNlIHRoZSBsb2FkIC0gYnJhaW4gLi4uYW5kIGhhdmUgYSB3YXkgdG8gY29tZSBiYWNrIGZvciByZXBlYXRzIGRheQ0KPiBhZnRlciBleGFtcGxlIHdob25ldCB0ZXN0IGRhdGENCg0KIyBCZWZvcmUgd2UgY29tZTogU2V0dXAgKGNoYXAgMCkNCg0KQXQgYXJyaXZhbCA6DQoNCi0gICBbIF0g4oCCQ29udHJvbCBiZWZvcmUgc3RhcnRpbmcgdGhlIGRhdGEgY291cnNlDQotICAgWyBdIOKAgioqUnNjcmlwdCB0byBydW4gdG8gaW5zdGFsbCBwYWNrYWdlcyA/IG9yIFJlbnYgPyoqIE5lZWQgdG8gZG8gb25lIGFuZCB0cnkgLSB0aGlzIGNvdWxkIGhlbHAgLSBUaGlzIE1VU1QgYmUgZG9uZSBhdCB0aGUgZW5kIG9mIHRoZSBjb3Vyc2UgcHJlcGFyYXRpb24sIGhvd2V2ZXIgdG8gYmUgc3VyZSB3ZSBoYXZlIGFsbCA/ICggV2UgYWxsIGhhdmUgaW5zdGFsbGVkIHRoZSBuZWVkZWQgcGFja2FnZXMgYW5kIFByb2dyYW1zPykNCg0KDQojIEludHJvZHVjdGlvbiAoY2hhcCAxKQ0KDQotICAgWyBdIOKAgkdvYWwgb2YgdGhlIGNvdXJzZQ0KLSAgIFsgXSDigIJ3aGF0IHRvIGV4cGVjdCBhbmQgc3RhdGUgb2YgbWluZA0KLSAgIFsgXSDigIJ3aGF0IGFib3V0IHVzaW5nIEFJIHRvIHdyaXRlIGNvZGUgPw0KLSAgIFsgXSDigIJhZGRpdGlvbmFsIHJlc291cmNlcyB5b3UgY2FuIHVzZSB0byBsZWFybiBtb3JlLCBoZXJlIGFuZA0KICAgIHRocm91Z2ggdGhlIGNvdXJzZQ0KDQojIEJhc2ljIFIgYW5kIGdpdGh1YiB3aXRoIFJzdHVkaW8gKGNoYXAgMikNCiANCiA+IGxlYXJuaW5nIGhvdyB0byB1c2UgYSBSIG1hcmtkb3duIGRvY3VtZW50IGFuZCBnaXQgYmFja3VwLCBzbWFsbCBpbnRybyB0byBSIHByb2dyYW1taW5nIGxhbmd1YWdlDQoNClN0YXJ0aW5nIHBvaW50OiBgbGVhcm5pbmdfUmAgZ2l0IHJlcG8gaGFzIGJlZW4gY2xvbmVkIGxvY2FsbHkNCg0KLSAgIFsgXSDigIIgUnN0dWRpbyB1c2FnZTogY3JlYXRpbmcgLyBvcGVuaW5nIGFuIFJwcm9qZWN0DQotICAgWyBdIOKAgiBHaXQgc29mdHdhcmUgaXMgdXNlZCBmb3IgYmFja3VwIG9mIG5vdGVzIGFuZCBjb2RlIHZlcnNpb25pbmcgdmlhIFJzdHVkaW8uIChXb3JrZmxvdykNCi0gICBbIF0g4oCCIC5naXRpZ25vcmUgZmlsZSBleGVyY2lzZSAoc2V0dXAgYXQgdGhlIHNhbWUgdGltZSkNCi0gICBbIF0g4oCCIFVzaW5nIGEgbm90ZWJvb2sgaW4gUnN0dWRpbzogYW5hdG9teSwgdGV4dCwgY29kZSBhbmQgcmVuZGVyaW5nDQotICAgWyBdIOKAgiBFeGVyY2lzZSBVc2luZyBhIFIgbWFya2Rvd24gZG9jdW1lbnQgJiBGYXN0IG92ZXJ2aWV3IG9mIFIgcHJvZ3JhbW1pbmcgbGFuZ3VhZ2UgKGludHJvZHVjdGlvbiB0ZXJtcyBhbmQgcnVubmluZyB0aGluZ3MgaW4gdGhlIGNlbGxzKSAhIFRISVMgTkVFRCBUTyBCRSBFWFBMQUlORUQgRFVSSU5HIFRIRSBDT1VSU0UgDQoNCldlIGhhdmUgZHVyaW5nIHRoZSBjb3Vyc2UgaGVyZSA6IA0KDQotICAgWyBdIOKAgmluc3RhbGxhdGlvbiBwYWNrYWdlcyBhbmQgbG9hZGluZyB0aGVtDQotICAgWyBdIOKAgnRha2luZyBub3RlcyBpbiBSbWFya2Rvd24gYW5kIHJ1bm5pZ24gY2VsbHMNCi0gICBbIF0g4oCCUiBub3Rpb25zIC4uLmFib3V0IFIgb2JqZWN0cyAobm90IGluIGRlcHRoKQ0KICAgIC0gICBbIF0g4oCCc29tZSBjb21tb24gZGF0YSB0eXBlcw0KICAgIC0gICBbIF0g4oCCaW50cm9kdWN0aW9uIHRvIHVzZSBoZWxwDQogICAgLSAgIFsgXSDigIJzbWFsbCBpbnRybyB0byBmdW5jdGlvbnMNCiAgICAtICAgWyBdIOKAgnN1Yi1zZXR0aW5nIC8gaW5kZXhlcw0KICAgIC0gICBbIF0g4oCCYSBiaXQgb2YgdmlldyBvZiBvYmplY3RzDQogICAgLSAgIFsgXSDigIJub3Rpb25zIGluIFIgLSBkaWZmZXJlbnQgd2F5cyB0byBkbyB0aGluZ3MgKG5vIHBlcmZlY3QgY29kZSEpDQogICAgLSAgIFsgXSDigIJwaXBlcyANCiAgICAtICAgWyBdIOKAgnNvbWUgdHJpY2tzIA0KLSAgIFsgXSDigIJTYXZpbmcgeW91ciBjb2RlIGFuZCBub3RlcyB0byBnaXQgYW5kIHB1c2ggdG8gZ2l0aHViLg0KICAgIC0gICBbIF0g4oCCVXNpbmcgZ2l0IGluIFIgdG8gYmFja3VwIHlvdXIgY29kZSBpbiBnaXRodWIgKGFkZCAtIGNvbW1pdCAtIHB1c2gpDQogIA0KLSAgIFsgXSDigIIgRXhlcmNpc2UgOiBQcmludGluZyB5b3VyIGNvZGUgaW4gYSB3b3JkIGRvY3VtZW50DQoNCg0KIyBCYXNpYyBSIGZvciBkYXRhIGFuYWx5c2lzIChjaGFwIDMpDQoNCk5COiBEYXRhIGZyb20gSHVtYW4gc2FtcGxpbmcgKEtvYm9Ub29sYm94KQ0KDQotICAgWyBdIOKAgkEgZ29vZCBvcmdhbmlzYXRpb24gb2YgeW91ciBwcm9qZWN0IGZvciBkYXRhIGFuYWx5c2lzDQoNCi0gICBbIF0g4oCCRmlyc3Qgc3RlcHMgaW4gZGF0YSBhbmFseXNpcw0KICAgIC0gICBbIF0g4oCCUmVhZGluZyBhIGRhdGEgZnJhbWUNCiAgICAtICAgWyBdIOKAgmNoZWNraW5nIGFuZCBzZXR0aW5nIGNvcnJlY3QgZGF0YSB0eXBlcw0KICAgIC0gICBbIF0g4oCCZGF0YSB0eXBlcyAocmV2aWV3LCBhbmQgYWRkKQ0KICAgIC0gICBbIF0g4oCCT2J0YWluaW5nIGEgZmFzdCBvdmVydmlldyBvZiB0aGUgZGF0YSBjb250YWluZWQgaW4gYSBkYXRhIGZyYW1lIChFeHBsYWluIHdoYXQgaXMgYSBkYXRhIGZyYW1lKQ0KICAgIC0gICBbIF0g4oCCT2JqZWN0IFZpc3VhbGl6YXRpb24gKGNvZGUgYW5kIFJzdHVkaW8gZW52aXJvbm1lbnQpDQogICAgLSAgIFsgXSDigIJHZXR0aW5nIGEgZmFzdCBzdW1tYXJ5IG9mIHRoZSBkYXRhIGNvbnRhaW5lZCBpbiB5b3VyIGRhdGEgZnJhbWUNCiAgICAgICAgLSAgIFsgXSDigIJjb3VudHMgKGNvbCwgcm93KQ0KICAgICAgICAtICAgWyBdIOKAgmZhY3RvcnMgYW5kIGxldmVscyAoc3VtbWFyeSB0YWJsZSAvIHRhbGx5KQ0KICAgICAgICAtICAgWyBdIOKAgnVzaW5nIHBpcGVzDQoNCi0gICBbIF0g4oCCIERhdGEgZnJhbWUgbWFuaXB1bGF0aW9uIHdpdGggZHBseXIgKGV0Yy4uLikNCiAgICAtICAgWyBdIOKAgmNsZWFuaW5nIGNvbHVtbiBuYW1lcyAoIHZhbHVlcyAtIGVnLiBOQSBhbmQgc3BhY2VzLCBzcGVjaWFsIGNoYXJhY3RlcnMpDQogICAgLSAgIFsgXSDigIJzZWxlY3RpbmcgY29sdW1ucw0KICAgIC0gICBbIF0g4oCCbXV0YXRpbmcNCiAgICAtICAgWyBdIOKAgmZpbHRlcmluZw0KICAgIC0gICBbIF0g4oCCZmluZGluZyBzcGVjaWZpYyBjb2x1bW5zDQogICAgLSAgIFsgXSDigIJhcnJhbmdpbmcgcm93cyBieSB2YWx1ZXMgaW4gdGhlIGNvbHVtbnMgIA0KICAgIC0gICBbIF0g4oCCc2F2aW5nIGludG8gYSBzcHJlYWRzaGVldCANCiAgICAtICAgWyBdIOKAgnN1bW1hcnkgKGJhc2U6OikNCiAgICAtICAgWyBdIOKAgmNoZWNraW5nIGlmIHZhbHVlcyBhcmUgdW5pcXVlIChJRCkNCiAgICAtICAgWyBdIOKAgmdyb3VwX2J5DQogICAgLSAgIFsgXSDigIJjb3VudCBhbmQgY3JlYXRpb24gb2Ygc2ltcGxlIGNvbnRpbmdlbmN5IHRhYmxlcw0KICAgIC0gICBbIF0g4oCCZmlsdGVyaW5nIG91dCByb3dzIHdpdGggcG9vciBkYXRhIHF1YWxpdHkgKHVzaW5nIGZpbHRlciBvbiBJRCkgDQogICAgLSAgIFsgXSDigIJleHBvcnRpbmcgZGF0YXNldCB0byBmaWxlIChjc3YpDQogICAgLSAgIFsgXSDigIJpZl9lbHNlIGFuZCBjYXNlX3doZW4gdG8gcmVwbGFjZSBtaXNzaW5nIHZhbHVlcw0KICAgIC0gICBbIF0g4oCCY291bnQgYW5kIHN1bW1hcnkgZnVuY3Rpb25zIChjb250aW5nZW5jeSB0YWJsZXMpIGluIGRwbHlyDQogICAgLSAgIFsgXSDigIJzb21lIGJhc2ljIHBsb3R0aW5nDQogICAgLSAgIFsgXSDigIJleHBvcnRpbmcvcmVhZGluZyBvYmplY3QgdG8vZnJvbSByZHMgZmlsZQ0KDQpFeGVyY2lzZXMgdG8gZ28gZnVydGhlciAod2UgZG8gbm90IG5lZWQgdG8gZG8gYWxsKS4gDQpTb2x1dGlvbnMgYXJlIHBhdHRlcm5zIHRoZSBzdHVkZW50cyBjYW4gcmV1c2Ugd2hlbiB3b3JraW5nIHdpdGggdGhlaXIgb3duIGRhdGEuICAgDQogICAgDQpBbGwgaW4gdGhlIHNwaXJpdCBvZiBkYXRhIGluc3BlY3Rpb24gdG8gZW5zdXJlIHByb3BlciBxdWFsaXR5OiBXaGljaCBpbmNsdWRlcyANCmRldGVjdGluZyBtaXN0YWtlcyBvciBpbmNvbnNpc3RlbmNpZXMuIA0KTGVhcm5pbmcgd2h5IGl0cyBpbXBvcnRhbnQgbm90IHRvIG1vZGlmeSB0aGUgDQpyYXcgZGF0YSwgZG9pbmcgc28gYnkgY29kZSBhbGxvd3MgdG8gZGV0ZWN0IGVycm9ycyBhbmQgYWxsb3dzIHRyYW5zcGFyZW5jeQ0Kb2Ygb3VyIGNob2ljZXMuIA0KICAgIA0KDQojIFVzaW5nIGRhdGEgZGlyZWN0bHkgZnJvbSBhIGRhdGFiYXNlIChXSE9ORVQpIGFuZCBqb2luaW5nIGRhdGFzZXRzLiAoY2hhcCA0KQ0KDQoNCk5COiBXSE9ORVQgImZha2UiIGRhdGEgZm9yIGxlYXJuaW5nICsgZGF0YSBmcm9tIEh1bWFuIHNhbXBsaW5nIChLb2JvVG9vbGJveCkNCg0KLSAgIFsgXSDigIJjcmVhdGluZyBhIGNvbm5lY3Rpb24gdG8gYSBTUUxpdGUgZGF0YWJhc2UNCiAgICAtICAgWyBdIOKAgndoeSB0byB1c2UgYSBkYXRhYmFzZQ0KICAgIC0gICBbIF0g4oCCbGF6eSBldmFsdWF0aW9uIChub3Rpb24pDQogICAgDQotICAgWyBdIOKAgnF1ZXJ5aW5nIGEgdGFibGUgaW4gYSBkYXRhYmFzZSB1c2luZyBkYnBseXINCiAgICAtICAgWyBdIOKAgmV2YWx1YXRpbmcgdGhlIHF1ZXJ5IChjb2xsZWN0KSANCg0KLSAgIFsgXSDigIJSZW1pbmRlciAtIHJlYWRpbmcgZnJvbSByZHMgZmlsZSAgICANCi0gICBbIF0g4oCCam9pbmluZyBkYXRhIGZyYW1lcyAoV0hPTkVUIHRvIGh1bWFuIGRhdGEgcXVlc3Rpb25uYWlyZXMpDQotICAgWyBdIOKAgm1ha2luZyBjYXRlZ29yaWVzIGFuZCBwbG90dGluZyB0aGVtIA0KLSAgIFsgXSDigIJkYXRhIHdpZGUgYW5kIGxvbmcgZm9ybWF0IHRyaWNrDQotICAgWyBdIOKAgiJiYWQgbG9va2luZyBwbG90IiwgYm94IHBsb3RzLCBzaW1wbGUgaGVhdCBtYXANCi0gICBbIF0g4oCCc2F2aW5nIHBsb3RzIA0KDQo8dT5Pbmx5IGlmIHRpbWUgcGVybWl0czo8L3U+DQoNCi0gICBbIF0g4oCCcmVtb3Zpbmcgb2JqZWN0cyBmcm9tIG1lbW9yeSAoZHB1dCB0cmljaykNCi0gICBbIF0g4oCCbm90aW9uIG9mIGlkZW50aXR5IGluIG9iamVjdHMgYW5kIG1lbW9yeSBwb2ludGVycyAtIGF3YXJlbmVzcyBpZGVudGljYWwgYW5kID09IA0KIC0gICBbIF0g4oCCc29tZSBtb3JlIGV4ZXJjaXNlcyBhbmQgdGlkeSBzZWxlY3Rpb24gbWVhbnMNCiAgDQoNCg0KPCEtLSBJICB0aGluayBpdCB3aWxsIGJlIGFjdHVhbGx5IG1vcmUgdGhhbiBlbm91Z2ggbWF0ZXJpYWwgDQoNCiMjIEV2ZW50dWFsbHkNCg0KLSAgIHB1bGxpbmcgZnJvbSBnaXRodWIgLSByZWNvdmVyeSBvZiB3aGF0IGhhcyBiZWVuIGRvbmUgYW5kDQogICAgY29sbGFib3JhdGlvbg0KLSAgIGdpdGh1YiBhbmQgWmVub2RvIC0gY2FuIHNob3cgdGhlbSBhcnRpY2xlDQotICAgd3JpdGluZyBmdW5jdGlvbnMgdXNpbmcgZHBseXIgLyB0aWR5dmVyc2UgLi4uIG9vcHMNCg0KPyAtIGRlY2ltYWxzIC4uLiB3YXJuaW5nICEgbm90IGRvbmUgLVw+IGRvIHRoYXQgZHVyaW5nIHRyYW5zZm9ybWF0aW9uIC0NCi0tPiANCg0KQmFjayB0byBbSW5kZXhdKGluZGV4Lmh0bWwp